Сколько света нужно растениям для роста

Сколько света нужно растениям для роста

Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.

Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Фаминцын [1] .

Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание, рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.

Содержание

Применение [ править | править код ]

Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.

Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.

В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР), индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) или металлогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.

Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.

Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.

Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.

Источники фитосвета [ править | править код ]

Применяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.

Светодиоды [ править | править код ]

Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами [2] .

Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки.

Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм» [3] .

Также имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400—500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны от 630 до 670 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.

Вышесказанное про отдельные светодиоды разных цветов не имеет отношения к современным фитодиодам, в которых уже применены все необходимые люминофоры и их спектр имеет два максимума в зоне работы фотосинтеза.

Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.

Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.

Световая эффективность [ править | править код ]

В следующей таблице приведена световая эффективность различных источников света

Категория тип Световая отдача (лм/Вт) КПД [4]
На основе горения Свеча 0,3 [5] 0,04 %
газовая горелка 2 [6] 0,3 %
Лампа накаливания 5 Вт лампа накаливания (120 В) 5 0.7 %
40 Вт лампа накаливания (120 В) 12.6 [7] 1.9 %
100 Вт лампа накаливания (120 В) 16.8 [8] 2.5 %
100 Вт лампа накаливания (220 В) 13.8 [9] 2.0 %
100 Вт галогенная лампа (220 В) 16.7 [10] 2.4 %
2.6 Вт галогенная лампа (5.2 В) 19.2 [11] 2.8 %
Кварцевая галогенная лампа (12-24 В) 24 3.5 %
Высокотемпературная лампа 35 [12] 5.1 %
Люминесцентная лампа 5-24 Вт компактная флюоресцентная 45-60 [13] 6.6-8.8 %
T12 линейная, с магнитным балластом 60 [14] 9 %
T8 линейная, с электронным балластом 80-100 [14] 12-15 %
T5 линейная 70-100 [15] 10-15 %
Светодиод Белый светодиод 97 — 210
Дуговая лампа Ксеноновые газоразрядные лампы 30-50 [16] [17] 4.4-7.3 %
Дуговые ртутные металлогалогенные лампы 50-55 [16] 7.3-8.0 %
Газоразрядная лампа Натриевая лампа высокого давления 150 [18] 22 %
Натриевая лампа низкого давления 183 [18] — 200 [19] 27-29 %
Лампа на галогенидах металлов 65-115 [20] 9.5-17 %
1400 Вт Серная лампа 100 15 %
Теоретический предел 683.002 100 %
Читайте также:  Почему у кур синеют гребешки и дохнут

Требования к свету у растений [ править | править код ]

У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.

Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света, такой, как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.

Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.

Однако освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м 2 , или фотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.

Искусственное освещение растений из космоса [ править | править код ]

В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике [en] предложил освещать посевы из космоса отражённым солнечным светом при помощи специального спутника с огромной отражающей поверхностью (200—2550 квадратных миль в зависимости от орбиты), названного автором Солеттой, с яркостью 0,2—0,5 солнечной. Планировали развернуть этот отражатель в 1995—2005 гг. с затратами порядка 30—60 млрд долларов. Предполагалось, что это увеличит мировое производство сельскохозяйственных растений на 3—5 процентов и окупится менее чем за 20 лет [21] , однако проект не был осуществлён.

Большую часть года, света для растений очень мало. И те, кто выращивают их круглогодично в закрытых помещениях, а не по сезонно на улице, сталкиваются из-за этого с большими проблемами.

Единственный выход их решить — это использовать искусственные источники света. Какие из них лучше выбрать и на что ориентироваться?

В первую очередь, рядовой обыватель обращает внимание на уровень потребления электроэнергии. Чем больше у вас будет растений, тем больше потребуется светильников и лампочек для них.

Неохота платить за электричество больше стоимости урожая. Поэтому при покупке светильников, большое внимание уделяют такому параметру как КПД лампочки.

Всем известные лампочки-груши с нитью накаливания, в процессе работы очень сильно нагреваются. Связано это с тем, что в них большая часть эл.энергии преобразуется не в свет, а в бесполезное тепло.

Поэтому постепенно от них начали отказываться и стали переходить на энергосберегающие лампы. Их КПД примерно в 4 раза выше, чем у обычных.

Однако по факту, мы получили те же самые люминесцентные лампы, хоть и меньшего размера, но содержащие ртуть. Если такая лампочка разобьется, вам придется срочно принять меры безопасности и провести так называемую демеркуризацию всего помещения.

Не только сама ртуть, но и ее пары ядовиты для человека. И даже в сверхмалых концентрациях могут вызвать тяжелые последствия.

Поэтому впоследствии им на замену пришли более безопасные светодиодные источники света. А специально для растений были разработаны фитолампы.

У светодиодов также высокий КПД и минимальный нагрев. А самое главное, они по-прежнему совершенствуются и улучшают свои характеристики год от года.

Однако как оказалось, КПД лампочки это не главное в правильном выращивании растений. Самое важное — это их спектр и насколько он отличается от естественного солнечного излучения. Ведь именно к нему привыкли все цветы, овощи, фрукты, ягоды.

Что же прячется за таким научным названием как спектр излучения? Чтобы понять это, придется вспомнить что такое свет? А свет — это не что иное, как электромагнитная волна.

Причем каждый цвет имеет определенную длину волны, отсюда и получается радуга. Однако разная длина означает не только разный цвет, но самое главное — разное количество энергии.

Если все цвета условно представить не в виде привычной прямой линии, а в виде шариков, то синий шарик будет самым большим по размеру. Зеленый поменьше, а красный окажется самым маленьким.

Все цвета всегда упрощают именно до этих трех видов R-G-B:

    красный
    зеленый
    синий

Почему синий шарик окажется самым объемным? Потому что длина его волны самая маленькая. Она меньше чем у зеленого цвета. А у зеленого в свою очередь, меньше чем у красного.

В итоге и получается, что красный цвет несет в себе меньше энергии, а синий больше всего.

И тут у многих может возникнуть логичный вопрос: "А есть ли разница в том, каким именно спектром освещать растения?" И если есть, можно ли эти знания как-то применить с пользой для дела?

Читайте также:  Плод клубники и гречихи

Ведь если какой-то цвет окажется более эффективным, то нет ничего проще, как направить всю энергию на растение только от него. Если синий цвет самый "жирный", достаточно засвечивать растения только им и получать шикарный урожай круглый год.

Однако все оказывается не так просто. Здесь нужно учитывать еще одну характеристику света — его качественный или спектральный состав.

Чтобы понять как отдельные цвета влияют на эффективность фотосинтеза, проводились научные эксперименты. Из целого листа выделялись отдельные чистые хлорофиллы. После чего, в течение длительного времени, их засвечивали светом различного спектра и проверяли результаты.

При этом в первую очередь, смотрели на эффективность поглощения СО2, то есть интенсивность фотосинтеза. Ниже представлен итоговый график такого эксперимента.

Из него видно, что хлорофилл в основном поглощается в синей и красной областях. В зеленой области эффективность минимальна.

Однако на этом не остановились и провели еще один эксперимент. В растениях также содержатся каротиноиды. Они хоть и играют незначительную роль, но и про них забывать не стоит.

Так вот, аналогичный опыт с каротиноидами показал, что ранее выделенные пигменты листа, поглощают в этом случае свет преимущественно в синей области спектра.

Посмотрев на это, все дружно решили что зеленый цвет абсолютно бесполезен и им можно пренебречь. Основной упор все специалисты предлагали делать только на синий и красный свет.

И соответственно более правильным считалось выбирать лампочки, которые излучают именно эти спектры больше всего.

Но как оказалось, изначальная ошибка экспериментаторов закралась в том, что они использовали не весь лист целиком, а выделяли из него пигменты и смотрели результаты только по ним.

На самом деле, в цельном листе свет очень сильно рассеивается. Провели еще опыты, но уже смотрели на весь лист и использовали разные растения. В итоге получили данные, которые более точно показывали насколько эффективно свет поглощается всем листком, а не его отдельными "кусочками".

С одной стороны, здесь опять доминируют синий и красный свет. Отдельные пики потребления фотонов доходят до 90 процентов.

Однако к удивлению многих, и зеленые лучи оказались не столь бесполезны как думали раньше. Дело в том, что благодаря своей проникающей способности, зеленый снабжает энергией более глубокие участки листвы, куда не долетают ни красный, ни синий.

Таким образом, если полностью отказаться от зеленого, вы можете ненароком погубить растение, и даже не будете понимать в чем причина.

Получается, что все цвета R-G-B нормально усваиваются листьями и нельзя выбрасывать какой-то один из них. Вот только необходимость энергии на разных цветах у разных растений не равноценна.

Для того чтобы объяснить это более наглядно и понятнее, проведем аналогию с чем-то съедобным. Допустим у вас на столе лежит спелый персик, ягода малины и груша.

Для вашего желудка все равно что вы съедите. Он одинаково хорошо переварит все ягоды и фрукты. Но это не означает, что для вас в последствии не будет никакой разницы. Разные продукты все равно по-разному влияют на ваш организм.

Съесть 10 ягод клубники это не то же самое, что 10 груш или персиков. Вы должны найти определенный баланс.

То же самое происходит и со светом для растений. Ваша задача грамотно подобрать, насколько каждого света должно быть в общем спектре. Только таким образом можно рассчитывать на быстрый рост.

Самый главный вопрос — какой свет будет считаться лучшим? Казалось бы, что тут гадать. Лучший вариант это солнечный свет и его близкие аналоги.

Ведь миллионы лет растения именно под ним и развивались. Однако посмотрите на картинку ниже. Вот как реально выглядит интенсивность солнечного света.

Видите, насколько здесь много зеленого. А как мы выяснили ранее, он хоть и полезен, но не в такой степени как другие лучи. Когда говорят, что солнечный свет самый эффективный и нечего отступать от матушки природы, не учитывают один простой факт.

В реальной жизни, а не в экспериментах, растения адаптируются не только к солнечному свету, но также и к условиям окружающей их среды, в которой они произрастают.

Допустим на глубине водоема, где растет какая-то зелень, доминирует синий цвет. А вот в лесу под кроной деревьев, уже победителем выходит зеленый.

А вот по поводу его эффективности в отдельных случаях возникают существенные вопросы. Вот оптимальное распределение спектров для двух самых популярных у нас овощей — огурца и помидора:

Всего на этих двух элементарных примерах между огурцом и томатом хорошо видно, насколько у них разная потребность. И если одной и той же лампочкой засвечивать оба овоща сразу, то результаты будут совершенно непредсказуемыми.

Кроме правильно подобранного спектра, важную роль играет еще два параметра — время и ритм освещения.

Все растения изначально произрастали на улице при естественном солнце. А солнце как известно не висит в зените 24 часа в сутки. Утром всходит, а вечером заходит. То есть естественная интенсивность освещения сначала постепенно растет, а во второй половине дня, достигнув своего пика, начинает падать.

Это и есть так называемый ритм. И растения его хорошо чувствуют. Измените ритм, не меняя ничего другого, и ваши овощи могут начать болеть, почувствовав себя "не в своей тарелке".

Поэтому опытные садоводы выделили три группы растений — короткого, длинного и нейтрального дня.

Вот их некоторые разновидности:

Длинный день — это когда интенсивность света наблюдается более 13 часов. Короткий — до 12 часов. Растениям для нейтрального дня все равно когда созревать, хоть при коротком, хоть при длинном.

Не будете соблюдать заданный природой цикл и у вас упадет урожайность. Сами растения будут какими-то карликовыми.

Читайте также:  Фото кукиша и фиги

Поэтому мало просто купить супер разрекламированные сорта, правильно их высадить, удобрять и поливать.

Как оказывается, еще нужно их правильно освещать. Причем и здесь нет универсального светильника для больших групп растений, везде требуется индивидуальный подход.

Только в этом случае результат вас порадует и вкусом и размером.

Полноценное освещение для растений так же важно, как вода и почва. Культуры открытого грунта растут в естественных световых условиях и нуждаются только в поливе и подкормках. Комнатным цветам «повезло» меньше, так как в помещении они почти всегда страдают от затемнения.

Как влияет свет на растения

Растущие в полутени растения «недоедают» и так же, как все живое прекращают расти, развиваться, цвести. Процессы фотосинтеза обеспечивают цветам полноценное органическое питание, которое требуется им не меньше, чем получаемые из грунта вода и минеральные соли.

Но при нехватке света фотосинтез резко замедляется. В результате побеги истончаются и вытягиваются, листья бледнеют и не вырастают до нормальных размеров.

Исследователи установили, что минимальная фотосинтетическая активность начинается уже при освещенности 100 лк. Для развития должно быть не менее 1000 лк, а лучше – еще больше. Но перебарщивать также нельзя, так как избыток света для некоторых растений вреден. От этого их листья могут сморщиться, покрыться пятнами от ожогов.

Что такое хорошее освещение для растений

Свет должен быть:

Качественным.
Каждой фазе роста соответствуют свои потребности в спектральном составе световых лучей. Например, для развития зеленой массы необходим голубоватый свет, а для роста корневой системы и в период подготовки к цветению в спектре должны быть оттенки желтого и красного. Зеленоватые лучи стимулируют процессы фотосинтеза в листьях с плотной структурой.

Продолжительным.
Большинство растений набирают силу и цветут только тогда, когда световой день составляет не менее 14 ч, то есть летом. Но есть и такие привереды, как пуансеттия и каланхоэ. Им для цветения необходимо находиться на свету не более 8-10 ч в сутки в течение 2 осенних месяцев.

Интенсивным.
Слабое освещение для растений губительно. Идеальный вариант для светолюбивых видов – 100000 лк, как у солнечного света. Поскольку обеспечить дома такие условия невозможно, остается один выход: стремиться к лучшему, исходя из потребностей домашнего «зеленого уголка».

Как создать нормальную световую среду для комнатных цветов

Как уже упоминалось выше, длительность светового дня для растений должна составлять, в среднем, 13-14 часов в сутки. Большое значение имеет также интенсивность подсвечивания. К примеру, если вы будете использовать маломощные лампы для освещения растений, растущих в природе на открытых солнечных участках, цветы могут «заболеть». Чтобы этого не случилось, желательно строго соблюдать световой режим.

Приблизительные нормы освещенности для активного развития и цветения:

Яркое

Умеренное

Слабое

Бильбергия, бугенвиллея, гардения, гибискус, кактусы (кроме эпифитных), каллистемон, кротон, орхидеи, пальмы, пеларгония, розы, суккуленты, цитрусовые.

Амариллис, бегония, бертолония, гибискус, замия, каладиум, каланхоэ, микания, плющ, фикус, филодендрон, фатсия, хлорофиттум, хризантема.

Антуриум, бильбергия, дифенбахия, драцена, калатея, кордилина, маранта, папоротники, спаттифиллум, традесканция, фатсия, хамедорея.

Фотосинтез запускается при участии хотя бы минимального количества световой энергии, поэтому тенелюбивых видов в природе нет. Есть теневыносливые, то есть менее требовательные к освещению. Но и им также необходимо дневное досвечивание хотя бы до 1000 лк.

Как рассчитать мощность ламп для освещенности полки с растениями

Освещенность – это количество люменов светового потока на квадратный метр поверхности. Предположим, что на полке длиной 80 см и шириной 30 см стоят цветы с умеренными требованиями к интенсивности освещения. Площадь полки составляет 0,8х0,3=0,24 (кв. м). Для того чтобы создать среднюю освещенность 5000 лк, необходимы лампы со световым потоком 5000х0,24=1200 (лм). Если они будут расположены на высоте 30 см, потери составят около 30 %, то есть световой поток должен увеличиться приблизительно до 1700 лм.

Теперь, зная общее значение светового потока и светоотдачу разных видов осветительных приборов, можно рассчитать мощность ламп для нормального освещения растений на полке:

  • Лампы накаливания. Светоотдача – 12-13 лм/Вт. Мощность – 1700÷12=141 (Вт). Это 2 лампы по 75 Вт каждая.
  • Люминесцентные. Светоотдача – 65 лм/Вт. Мощность – 1700÷65=26 (Вт). Понадобятся, к примеру, 2 лампы с рефлектором по 13-15 Вт.
  • Светодиодные. Светоотдача – 100 лм/Вт. Мощность – 1700÷100=17 (Вт). Достаточно 2 ламп по 8-9 Вт.

Лампы накаливания для подсвечивания – не лучший выбор, так как они не имеют в спектре синих и голубых тонов. Недостаток люминесцентных приборов освещения – выделение тепла, которое может помешать нормальному развитию зеленой массы. Светодиоды лишены этих минусов, к тому же они потребляют значительно меньше электроэнергии, дольше служат и не содержат ртути.

Это теоретические расчеты, которые весьма приблизительны. Установить точные параметры освещенности полки поможет люксметр RADEX LUPIN. Он же определит реальный световой поток ламп, который не всегда соответствует значению, заявленному производителем.

Зачем и чем измерять освещенность зеленого уголка

Если вы знаете световой поток и мощность используемых для подсветки ламп, то сможете приблизительно рассчитать освещенность, следуя указанному выше алгоритму. Но это значение будет далеко не точным. И, возможно, растения, которые недополучают света, продолжат чахнуть, несмотря на якобы нормальное освещение.

Чтобы получить максимально достоверную картину, используйте для измерения бытовой люксметр RADEX LUPIN. С таким прибором вы легко решите проблему освещенности любимых растений.

Прибор очень прост в использовании, его можно переносить в сумочке или кармане. Без люксметра организовать оптимальную световую среду для растений сложно. Всегда будет риск ошибки – неточности расчета или покупки неправильно выбранных ламп. Поэтому в арсенале «продвинутых» цветоводов обязательно есть качественный люксметр.

Если вашим комнатным цветам не хватает света, помогите им. Рассчитайте освещенность, установите соответствующие лампы и контролируйте световой режим с помощью люксметра. В благодарность растения отзовутся мощным ростом, их листья и стебли наполнятся соком, появятся силы на продолжительное цветение!

Ссылка на основную публикацию
Adblock detector